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ABSTRACT
To effectively cope with increasing customization demands,
companies that have developed variants of software systems
are faced with the challenge of consolidating all the vari-
ants into a Software Product Line, a proven development
paradigm capable of handling such demands. A crucial step
in this challenge is to reverse engineer feature models that
capture all the required feature combinations of each sys-
tem variant. Current research has explored this task using
propositional logic, natural language, and search-based tech-
niques. However, using knowledge from the implementation
artifacts for the reverse engineering task has not been stud-
ied. We propose a multi-objective approach that not only
uses standard precision and recall metrics for the combina-
tions of features but that also considers variability-safety, i.e.
the property that, based on structural dependencies among
elements of implementation artifacts, asserts whether all fea-
ture combinations of a feature model are in fact well-formed
software systems. We evaluate our approach with five case
studies and highlight its benefits for the software engineer.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic Methods

Keywords
Reverse Engineering; Feature Models; Multi-Objective Evo-
lutionary Algorithms

1. INTRODUCTION
Software Product Lines (SPLs) are families of related soft-

ware systems where each product has a different combina-
tion of features [3]. SPL practices have extensive and proven
technological and economical advantages [19]. However, the
effective adoption of SPLs poses several challenges. Salient
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among them is the reverse engineering of SPLs from exist-
ing software system variants, the most prevalent scenario
in industry. A first requirement to tackle this challenge is
extracting feature models that effectively describe the com-
binations of features present in the existing system vari-
ants. Current approaches rely on configuration scripts [17],
propositional logic expressions [5, 18], natural language [20],
ad hoc algorithms [1, 8, 9], and even search-based algo-
rithms [12, 13, 14]. However, to the best of our knowl-
edge, none of them exploit information on how the system
variants are actually implemented or take a multi-objective
perspective whereby different quality aspects of the reverse
engineering task are simultaneously considered.

The driving motivation of our work is to extract feature
models that are variability-safe, which means that, based
on a concrete set of implementation artifacts, all the feature
combinations of the variants denoted by a feature model are
structurally well-formed, e.g. they do not have unresolved
references to undefined elements. In this paper, we take a
multi-objective perspective for reverse engineering feature
models where the objective functions not only consider the
recall and precision of the feature combinations of the ob-
tained feature models, but also if they are variability-safe.
The latter is computed from dependency information among
elements of the source code artifacts that implement the sys-
tem variants. The multi-objective approach that we propose
gives software engineers the capacity to detect inconsisten-
cies between the desired feature combinations and the imple-
mentation artifacts (e.g. infeasible products), and to analyze
different trade-offs among the three objectives (e.g. offering
more well-formed products than currently existing variants).
We evaluated our approach with five case studies of differ-
ent domains and dimensions. The results clearly illustrate
the advantage as well as the feasibility of a multi-objective
perspective for this vital reverse-engineering task.

2. BACKGROUND
In this section we briefly present the basic background

knowledge on feature models and introduce our running ex-
ample which we use to illustrate the source code dependen-
cies we consider in our reverse engineering approach.

2.1 Features Models
Feature Models (FMs) are a de facto standard for mod-

elling the different combinations of features desired in an
SPL [10]. Features are depicted as labelled boxes connected
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by lines to other features they relate with, all collectively
forming a tree-like structure.

A feature can either be mandatory, which is selected in a
system whenever its parent feature is also selected, or op-
tional, which may or may not be selected whenever its parent
feature is selected. They are respectively represented with
filled and empty circles at the end of the feature relation as
shown in Figure 1(a) and Figure 1(b).

Features can be grouped into alternative groups where if
the parent feature of the group is selected then exactly one
feature from the group must be selected, or into or groups
where if the parent feature of the group is selected then one
or more features from the group can be selected. Feature
groups are depicted with lines connecting the parent feature
(P) with the group features (C1, C2, and C3), crossed by an
empty arc for alternative groups and by a filled arch for or
groups as illustrated in Figure 1(c) and Figure 1(d).

Besides the hierarchical relations among features, features
can also relate across different branches of the feature model
with Cross-Tree Constraints (CTCs) [4]. The most com-
mon types are requires relation whereby if a feature A is
selected a feature B must also be selected, and excludes re-
lation whereby if a feature A is selected then feature B must
not be selected, and vice versa. These relations are com-
monly depicted, respectively, with a single and double-arrow
dashed line as illustrated in Figure 1(e).

Figure 1: Feature Models Graphical Notation

2.2 Running Example
As our running example, let us consider a group of system

variants of drawing applications which we would like to con-
solidate into a product line called Draw Product Line (DPL).
Each variant contains different combinations of the following
features: the ability to handle a drawing area (BASE), draw
lines (LINE), draw rectangles (RECT), select a color to draw
with (COLOR), draw filled rectangles (FILL), and clean the
drawing area (WIPE). Table 1 lists the 16 variants of DPL
where the selected features are denoted with X, while the
unselected features are left empty. We formally refer to each
feature combination as a feature set defined as follows [12]:

Definition 1. Feature Set. A feature set is a 2-tuple
[sel,sel] where sel and sel are respectively the set of se-
lected and not-selected features of a system variant. Let FL

be the list of features of a feature model, such that sel, sel
⊆ FL, sel ∩ sel = ∅, and sel ∪ sel = FL.

Table 1: Feature Sets for DPL
Products BASE LINE RECT COLOR FILL WIPE

ProductX1 X X X
ProductX2 X X X
ProductX3 X X X X
ProductX4 X X X X X
ProductX5 X X X X
ProductX6 X X
ProductX7 X X X X
ProductX8 X X X
ProductX9 X X
ProductX10 X X X
ProductX11 X X X
ProductX12 X X X X
ProductX13 X X X X
ProductX14 X X X X X
ProductX15 X X X X X
ProductX16 X X X X X X

2.3 Source Code Dependency Graphs
Variability safety is the property of feature models that

guarantees that all the variants that a feature model de-
scribes are structurally well-formed with respect to a set of
concrete implementation artifacts, for example that they do
not have unresolved references to undefined variables.

In this paper, we describe how information regarding de-
pendencies among the code artifacts that implement the ex-
isting software variants can be exploited to reverse engineer
variability-safe feature models. For this purpose, we rely on
the terminology and tool support presented by Linsbauer et
al. [7, 11]. Their work distinguishes two kinds of modules in
the system variants:

Definition 2. Base Module. A base module imple-
ments a feature regardless of the presence or absence of any
other features and is denoted with the feature’s name written
in lowercase.

Definition 3. Derivative Module. A derivative mod-
ule m = δn(c0, c1, ..., cn) implements feature interactions,
where ci is F (if feature F is selected) or ¬F (if not selected),
and n is the order of the derivative.

Linsbauer et al.’s extraction algorithm automatically pro-
duces a set of traces between both types of modules and
the implementation artifacts (e.g. source code fragments)
that implement them [11]. These code fragments can be
of any granularity level, from entire classes down to indi-
vidual statements. Let us consider the examples shown in
Figure 2. This figure shows as comments some of the traces
computed by our algorithm. Line 5 defines a field that traces
to the base module of feature Color, which is defined in class
Canvas regardless of the presence of other feature combina-
tions in any product variant. As another example, consider
method with signature mousePressedLine(MouseEvent)
in Line 7. The method header and most of its body trace
to base module Line, meaning that these statements will
be included in class Canvas whenever feature Line is in-
cluded regardless of any other selected feature combina-
tion. Notice now that Line 10 traces to derivative mod-
ule δ1(Color, Line), which means this assignment statement
will be part of its containing method whenever both features
Color and Line are present in a system variant.

Definition 4. Module Expression. A module expres-
sion is the propositional logic representation of modules. For



1 public class Canvas ... {
2 List <Shape > shapes = new LinkedList <Shape >();
3 Point start;
4 Line newLine = null; // Line
5 Color color = Color.BLACK; // Color
6 ...
7 void mousePressedLine(MouseEvent e) { // Line
8 if (newLine == null) {
9 start = new Point(e.getX(), e.getY());

10 newLine=new Line(color ,start);//δ1(Color, Line)
11 shapes.add(newLine);
12 }
13 }
14 }

Figure 2: Source Code Snippet for DPL Example

a base module b, the module expression is its own literal b.
For a derivative module m = δn(c0, c1, ..., cn) its module ex-
pression corresponds to c0 ∧ c1 ∧ ... ∧ cn.

For example, the module expression of base module Line

is Line. As another example, consider module δ1(Color, Line),
which expresses the interaction of features Color and Line,
and is represented by the module expression Color ∧ Line.

Based on the output of Linsbauer et al.’s algorithm, our
work uses dependencies between code fragments, such as
method calls and field references, as described next.

Definition 5. Dependency. A dependency establishes
a requirement relationship between two sets of modules and
it is denoted with a three-tuple (from, to, weight), where
from and to each are a set of modules (or module expres-
sions) of the related modules, and weight expresses the strength
of the dependency, i.e. the number of dependencies of struc-
tural elements in modules from on structural elements in
modules to. We use the dot (.) operator to reference el-
ements of a tuple, e.g. the weight of a dependency dep is
denoted by dep.weight. A dependency’s propositional logic
representation is defined as:∨

mfrom∈dep.from

mfrom ⇒
∧

mto∈dep.to

mto

Definition 6. Dependency Graph. A dependency graph
is simply defined as a set of dependencies, where each node
in the graph corresponds to a set of modules (or module ex-
pressions), and every edge in the graph corresponds to a de-
pendency as defined above. Edges are annotated with natural
numbers that represent the dependencies’ weights.

Figure 3 shows the dependency graph of our running ex-
ample DPL considering all its variants. The nodes are la-
belled with the corresponding trace’s lowest order modules
as they are the most important ones, higher order mod-
ules are not depicted to avoid clutter. Also for readability
self-dependencies are not shown. Base modules are depicted
with solid border while derivative modules are depicted with
dashed border. It is worth noting that edges with the high-
est values tend to be those that go to base modules (e.g.
Fill to Rect, or Line to Base), and that the core feature
Base has the highest incoming values.

Let us now illustrate the propositional logic representa-
tion of dependencies using code snippet in Figure 2. As
a first example, consider the dependency between module
δ1(Color, Line) and module Color that comes from the fact

that newLine = new Line(color,start); in Line 10 which
belongs to module δ1(Color, Line) accesses the field color

(Line 5) which belongs to module Color. The correspond-
ing propositional logic expression that must hold for this
dependency is (Color ∧ Line)⇒ Color.

Another example, consider module δ1(Color, Line) which
depends on module Line because the same statement in
Line 10 is contained in the method public void mouse-

PressedLine(MouseEvent e) (Line 7) which belongs to
module Line. The statement requires the method to be
present, because otherwise the statement could not exist
in isolation. The propositional logic representation is then
(Color ∧ Line)⇒ Line.

The dependency graph of the DPL can also be represented
as a dependency matrix as shown in Table 2. Every row
in the matrix represents a dependency, where the first col-
umn of the matrix is its ID number. The second and third
columns are respectively the modules that depend on each
other, i.e. the modules in column from require (i.e. depend
on) the modules in column to. The weight of each depen-
dency is presented in the fourth column. The fifth column
presents the normalized weight values. The weights of the
edges are normalized so that the sum of all weights in the de-
pendency graph is 1. We use these normalized values in our
multi-objective approach as described in the next section.

Notice that some of the propositional logic constraints de-
rived from the dependencies (e.g. the 2 examples above)
are tautologies that will always hold, like (Color ∧ Line ⇒
Line) ⇔ TRUE. This is not a mistake, but merely an
indication that the implementation is consistent with the
variability represented in the feature model.

Table 2: Dependency Matrix for DPL
ID From To Weight Normalized

1 Line Base 21 0.1304
2 Wipe Base 10 0.0621
3 Color Base 19 0.1180
4 Rect Base 20 0.1242
5 Fill Base 17 0.1056
6 Fill Rect 23 0.1429
7 Fill Color 3 0.0186
8 Fill δ1(Rect, Color) 1 0.0062
9 δ1(Rect, ¬Color) Rect 12 0.0745

10 δ1(Rect, Color) Rect 3 0.0186
11 δ1(¬Color, Line) Line 8 0.0497
12 δ1(Color, Line) Color 1 0.0062
13 δ1(Color, Line) Line 10 0.0621
14 δ2(Rect, Color, ¬Fill) δ1(Rect, Color) 1 0.0062
15 δ2(Rect, Color, ¬Fill) Rect 11 0.0683
16 δ2(Rect, Color, ¬Fill) Color 1 0.0062

Total: 161 1.0000

3. A MULTI-OBJECTIVE PERSPECTIVE
In this section we describe and illustrate the objective

functions that our approach employs which rely on informa-
tion retrieval measures and that also exploit the information
provided in the dependency graphs.

3.1 Objective Functions Definitions
We start by defining some auxiliary functions. In the fol-

lowing definitions, let FM denote the universe of feature
models, SFS the universe of sets of feature sets, and sfs
the initial set of feature sets defined by the software engineer
(e.g. as shown in Table 1 for our DPL running example).
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Figure 3: Dependency Graph for DPL

Definition 7. featureSets. Function featureSets returns
the sets of feature sets denoted by a feature model.

featureSets : FM→ SFS

The dependencies of a dependency graph must hold in
order to guarantee variability safety of system variants. A
system variant that violates at least one of the dependencies
will not be well-formed because at least one of the source
code dependencies is not fulfilled for at least one feature set.

Definition 8. holds. Function holds(dep, fs) returns 1
if dependency dep holds on the feature set (of a system vari-
ant) fs and 0 otherwise. A dependency dep holds for a fea-
ture set fs if:

(
∧

f∈fs.sel

f ∧
∧

g∈fs.sel

¬g)⇒ (dep.from⇒ dep.to)

For example, consider dependency Fill ⇒ Rect, and the
system with features Base and Line selected, i.e. with fea-
ture set [{Base, Line}, {Fill, Rect,Wipe, Color}]. Function
holds returns 1 because the following propositional logic
formula evaluates to true: (Base ∧ Line ∧ ¬Fill ∧ ¬Rect ∧
¬Wipe ∧ ¬Color)⇒ (Fill⇒ Rect).

Now we define the three objective functions that our work
considers. The first two are based on information retrieval
metrics (see [15]), and the third captures variability safety
based on the source code dependencies.

Definition 9. Precision (P). Precision expresses how
many of the feature sets denoted by a reverse-engineered fea-
ture model fm are among the desired feature sets sfs.

precision(sfs, fm) = |sfs∩featureSets(fm)|
|featureSets(fm)|

Definition 10. Recall (R). Recall expresses how many
of the desired feature sets are denoted by the reverse-engineered
feature model fm.

recall(sfs, fm) = |sfs∩featureSets(fm)|
|sfs|

Definition 11. Variability Safety (VS). We express
the degree to which a reverse-engineered feature model fm
is variability-safe with respect to a dependency graph dg as
follows:

variabilitySafety(fm, dg) =

∑
dep∈dg

dep.weight×


∑

fs∈featureSets(fm)

holds(dep, fs)

|featureSets(fm)|



V S = 0 means every product variant in fm violates ev-
ery dependency constraint in dg, and V S = 1 means every
product variant in fm satisfies every dependency constraint
in dg. Next we illustrate our three objective functions.

3.2 Objective Functions Illustration
In this section we illustrate our three objective functions,

based on the feature sets of sfs in Table 1, the dependency
graph dg from Figure 3, and the normalized weight values for
dg from Table 2. Consider the three examples of extracted
feature models shown in Figure 4 along with their respective
values of precision, recall and variability safety.

The feature model FM1, Figure 4(a), is an example of
an ideal feature model for the feature sets sfs we are
considering. It has |featureSets(FM1)| = |sfs| = 16
valid configurations, and exactly the same as shown in
Table 1. Hence, the values for both precision and recall
are 1.000. In addition, the variability safety value is also
1.000, which means that the features sets of FM1 satis-
fied all the dependencies. Take for example the system
with feature set [{Base,Rect, Color}, {Wipe, Line, F ill}]
and the dependency with ID 14 in Table 2, expressed as
δ2(Rect, Color,¬Fill) ⇒ δ1(Rect, Color). The evaluation
of function holds returns 1, meaning that this dependency
is satisfied by the example feature set.

Let us now consider the feature model FM2, Figure 4(b),
which has |featureSets(FM2)| = 12 feature sets of which
|sfs ∩ featureSets(FM2)| = 10 are contained in the input
feature sets sfs. Hence the value for precision is 0.833 and
for recall is 0.625. For this feature model, some of its denoted
feature sets do not satisfy all dependencies. For instance,
for the feature set [{Base, Line,Rect, F ill}, {Wipe,Color}],
the dependencies ID 7 (Fill ⇒ Color) and ID 8 (Fill ⇒
δ1(Rect, Color)) are not satisfied. According to dependency
ID 7, when the feature Fill is included in a feature set, fea-
ture Color must also be included. Similarly for dependency
ID 8, when feature Fill appears, features Rect and Color

must also be included. This feature set hence breaks these
two dependency constraints. In other words, FM2 is not
fully variability-safe with final value of VS of 0.996.

For feature model FM3, Figure 4(c), there are 6 config-
urations possible, and all are contained in the input fea-
ture sets sfs, in other words, |featureSets(FM3)| = 6 and
|sfs ∩ featureSets(FM3)| = 6. Hence, the value of pre-
cision is 1.000 and the value of recall is 0.375. Now let us
consider the variability safety objective that has a value of
1.000. As mentioned before for FM1, this value indicates
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Figure 4: Examples of Extracted Feature Models for DPL

that for all denoted feature sets, no dependency constraint
is broken. For example, let us consider the feature set:
[{Base, Line,Rect, Color, F ill}, {Wipe}]. For this feature
set the dependencies with IDs {1, 3, 4, 5, 6, 7, 8, 10, 12, 13}
in Table 2 are satisfied because both the depending modules
(from column) as well as the modules they depend on (to
column) are contained. For instance, according to depen-
dency with ID 1, when feature Line is selected in a feature
set, feature Base must also be in the feature set, which is
the case because Base is the root feature and Line is its
mandatory child. Furthermore, the dependencies with IDs
{2, 9, 11, 14, 15, 16} are also satisfied because the depend-
ing modules (from column) are not contained. For instance,
dependency with ID 2 states that when feature Wipe is se-
lected, feature Base must also be selected, but since in our
feature set example feature Wipe is not selected, it is not
required that feature Base be selected.

Considering the three feature models presented in Figure 4
it is also possible to observe trade-offs among the objectives.
It is clear that FM1 is the optimal solution for the given
input, but this ideal solution is not known in the beginning of
the evolutionary process. If we consider FM2 and FM3, it is
not simple to decide which one is better. They have different
values for the three objectives. FM2 has a better value for
recall than FM3, but on the other hand, FM3 has better
values for precision and variability safety than FM2. These
types of trade-offs give the software engineer the flexibility
to decide which solution(s) work(s) best for his/her concrete
reverse engineering task.

4. EVALUATION
In this section we provide details of the case studies used in

our evaluation, our experimental set up, the results obtained
with their corresponding analysis, and the threats to validity
we identified. The implementation and data are available
online for replication1.

4.1 Case Studies
Table 3 presents the systems used in the evaluation of

the proposed approach. Draw Product Line (DPL), briefly
presented in our running example, is a simple drawing ap-
plication. Video On Demand (VOD) implements video-on-
demand streaming. ArgoUML is an open source UML mod-
elling application. ZipMe is a system for files compression.
Game Of Life (GOF) is a customizable game.

1http://isse.jku.at/tools/gecco15

Table 3: Case Studies Overview
System #F #P LoC #Nodes #Edges

DPL 6 16 282 - 473 12 27
VOD 11 32 4.7K - 5.2K 7 11
ArgoUML 11 256 264K - 344K 49 114
ZipMe 7 32 5K - 6.2K 29 60
GOL 15 65 874 - 1.9K 12 24
#F: Number of Features, #P: Number of Products, LoC: Lines of

Code, #Nodes: Number of Nodes in the Dependency Graph,
#Edges: Number of Edges, i.e. Dependencies, in the

Dependency Graph

4.2 Experimental Setup
As explained before, we used three objective functions pre-

cision, recall, and variability safety and normalized their val-
ues in the interval between 0 and 1. The goal is to maximize
the values of all objective functions. Hence, the best solution
is precision=1.0, recall=1.0, and variability safety=1.0.

For our implementation, we relied on the same genetic pro-
gramming representation and evolutionary operators pro-
posed by Linsbauer et al. [12], whose parameter settings
are replicated in Table 4. In contrast with their single-
objective work, we not only use recall and precision but
also add variability-safety as objective function and use the
Non-Dominated Sorting Genetic Algorithm (NSGA-II) [6],
implemented in the ECJ Framework2. We performed 30 in-
dependent runs of our algorithm for each case study. The
runs were performed on a machine with an Intel R© CoreTM

i7-4900MQ CPU with 2.80 GHz, 16 GB of memory running
a Linux platform.

Table 4: Algorithm’s Parameters based on [12].
Parameter Value

Number of Generations 1000
Population Size 100
Crossover 0.7
Feature Tree Mutation 0.5
CTCs Mutation 0.5
Number of Elites 1
Selection Method Tournament
Tournament Size 6
Maximium CTC Percentage for Builder* 0.1
Maximium CTC Percentage for Mutator* 0.5

* relative to number of features

2http://cs.gmu.edu/˜eclab/projects/ecj/
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4.3 Results and Analysis
For the analysis we composed the approximated Pareto

Front (PF) by merging all the solutions of each run and
leaving only the non-dominated solutions. The PF for each
case study is presented in Table 5. The average runtime
of the algorithm NSGA-II in each run for the case studies
were: ArgoUML = 7m 16s 337ms, DPL = 9s 854ms, GOL
= 45s 036ms, VOD = 574ms, and ZipMe = 40s 263ms.

Table 5: Non-Dominated Solutions

System Precision Recall
Variability

Safety

ArgoUML

1.0 1.0 0.9999630
1.0 0.9375 0.9999654
1.0 0.875 0.9999683
1.0 0.75 1.0

DPL 1.0 1.0 1.0

GOL

1.0 0.5538462 1.0
0.8333333 0.6153846 1.0
0.8000000 0.7384616 1.0
0.4851485 0.7538462 1.0
0.4827586 0.8615385 1.0
0.4571429 0.9846154 1.0
0.2826087 1.0 1.0

VOD 1.0 1.0 1.0

ZipMe

(A) 1.0 0.75 1.0
(B) 1.0 0.875 0.9999600
(C) 0.9696970 1.0 0.9999548
(D) 1.0 1.0 0.9999534

For the case studies DPL and VOD the PF is composed by
only one solution. This single solution has the best values for
the three objectives, therefore it dominates any other exist-
ing solution. The reverse-engineered feature model denotes
all the feature sets used as input (recall=1.0), the feature
sets denoted are exactly those used as input (precision=1.0)
and none of the feature sets break any of the dependency
constraints (variability safety=1.0). During the analysis of
the reason why these systems have only one solution, we
figured out that their features are mainly connected by op-
tional and mandatory relationships, the depth of the feature
model tree has only two levels, and the input feature sets
could be achieved by different FMs. These characteristics
allow the values of precision and recall to reach 1.0 in the
same solution. Furthermore, these two systems have few de-
pendencies (see Table 3), making it easier to reach 1.0 for
variability safety. In other words, these two systems impose
less constraints on the search space which makes finding a
solution easier.

For the systems ArgoUML, GOL and ZipMe the approx-
imated PF has four, seven and four solutions, respectively.
This indicates that there are some conflicts to optimize the
three measures simultaneously. This is an important benefit
of using a multi-objective approach, since no single solu-
tion is the best one, but a set of acceptable solutions exists
and their respective trade-offs can be considered by the soft-
ware engineer. We now illustrate in more detail the decision
making support that our approach can provide to software
engineers. We use the ZipMe case study because it has a
good trade-off among the solutions and because of its size,
only seven features, which allows us to depict some of the
feature models that were reverse-engineered.

Figure 5 shows the solutions of ZipMe for each combina-
tion of two dimensions in the search space. The solutions
are labelled with letters for easy reference, see Table 5 last
row. Figure 5(a) presents the measures of precision and re-
call. In an initial analysis, considering only these two objec-
tives, solution D is the best one, with value 1.0 for precision
and recall. However, these solutions have different values of
variability safety, as depicted in the other graphs. In Fig-
ure 5(b), it can be seen that solution D has the worst value
for variability safety with the value 0.9999534. This value
indicates that some dependencies are broken for some fea-
ture sets, in particular one dependency is broken by eight
feature sets. Solution A has the best value for variability
safety, i.e. 1.0, which indicates that there are no feature sets
that break any dependency. In this same solution, the value
of precision is still excellent (precision=1.0), but the value of
recall of this solution is the worst (recall=0.75), as presented
in Figure 5(c). In this figure, we can also observe that the
value of recall increases while the value of variability safety
decreases. The solutions C and D have the best value of re-
call (recall=1.0) and a slight difference of variability safety
with values of 0.9999548 and 0.9999534 respectively. Solu-
tion C has better value of variability safety than solution
D, but on the other hand has the worst value of precision
(Figure 5(b)). Solution B has the best value of precision,
as well as solutions A and D, has a slightly better value of
variability safety than solutions C and D, but on the other
hand has a worse value of recall than solutions C and D.

Let us now analyze the meaning of the values for each
objective function using the solutions of ZipMe shown in
Figure 6. It is important to point out that we identified
the dependency from feature GZip to feature CRC as the only
broken dependency in solutions B, C, and D. In the FM of
solution A, shown in Figure 6(a), we observe that all depen-
dencies are satisfied (variability safety = 1.0). The depen-
dency broken in the other FMs is not possible here because
feature GZip is child of CRC. But this feature model does
not denote the same feature sets used as input, for exam-
ple, those with feature GZip and without feature CRC. From
the 32 feature sets used as input only 24 are denoted, hence
the value of recall decreases to 0.75. The FM of solution B,
shown in Figure 6(b), denotes 28 feature sets belonging to
the input (recall=0.875). The feature sets missing are be-
cause of the or group that forces the selection of at least one
of the features CRC, ArchiveCheck and Extract. From these
28 feature sets, six break the dependency between features
GZip and CRC, i.e. variability safety = 0.9999600. The FM of
the solution C, shown in Figure 6(c), denotes all the 32 input
feature sets (recall=1.0). However, one more additional fea-
ture set is also denoted, namely, a feature set with only the
feature Base. This surplus decreases the value of precision
to 0.9696970. Out of these 33 feature sets, the dependency
between GZip and CRC is broken in eight of them. The FM
in solution D, Figure 6(d), denotes all the 32 feature sets
used as input (recall=1.0), there are no additional feature
sets (precision=1.0), and eight feature sets break the depen-
dency between GZip and CRC. Even though the number of
broken dependencies is the same as in solution C, the value
of variability safety of solution D (i.e. 0.9999534) is worse
because solution C (i.e. 0.9999548) has more feature sets.

In summary, based on the obtained solutions, the soft-
ware engineer can decide which combinations of objective
functions and trade-offs are more relevant to his/her task.
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Figure 5: ZipMe Non-Dominated Solutions
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Figure 6: ZipMe Feature Models

For instance, if the recall is more important, solutions C
and D are the best options. If he/she has precedence for
variability safety, solution A is the best. On the other hand,
if the goal is a solution with good trade-off considering all
objectives, solution D can be a better option. Regarding the
practical use of the variability safety, if the software engineer
chooses a solution with variability safety less than 1.0 (e.g.
solution B), he/she must resolve the broken dependencies
(e.g. applying refactorings) so that the affected systems can
be actually realized if so desired.

In contrast with ZipMe, the case studies ArgoUML and
GOL only exhibit trade-offs between two objective func-
tions, see Table 5. Regarding ArgoUML, the values of pre-
cision for all solutions are the best (precision=1.0), so the
software engineer should decide among recall or variability
safety values. For GOL, the value of variability safety is the
best for all solutions (variability safety=1.0), with diversity
of values for precision and recall to choose from.

4.4 Threats to Validity
The first threat to validity that we identified was the selec-

tion of parameter settings for our algorithm. To address this
threat, we relied on the standard values employed by Lins-
bauer et al. [12]. Certainly, other parameter values could
yield different results. A detailed analysis is outside of the
scope of this paper and part of our future work. The second
threat concerns the selection of case studies. To address this
threat, we selected five case studies from different applica-

tion domains and dimensions. These case studies have been
substantially used for SPL research for multiple purposes [2].
Based on this we argue that they are representative of the
reverse engineering scenario targeted by our approach. A
third threat regards the comparison against related work.
We should remark that, to the best of our knowledge, our
work is the first to propose a multi-objective perspective
and include information from artifacts such as dependency
graphs for reverse engineering feature models. Therefore a
comparison against such approaches is not adequate.

5. RELATED WORK
There is increasing literature in reverse engineering fea-

ture models. In this section, we summarize those pieces of
work closest to ours. The closest related work is Linsbauer et
al. [12], on which we based our feature model representation
and evolutionary operators. In contrast with our work, they
propose a single-objective algorithm for F1 — a measure
that considers recall and precision with equal preference —
and do not consider any information from implementation
artifacts for their reverse engineering of feature models.

Work by Haslinger et al. proposes an ad hoc algorithm to
reverse engineer feature models from feature sets that works
by identifying occurrence patterns in the selected and not
selected features that are mapped to parent-child relations of
feature models [8]. This work has been extended to consider
requires and excludes CTCs [9]; however, it does not support
more general types of CTCs. In contrast with our work, they



do not consider any domain knowledge information, just the
input feature sets, for the reverse engineering task.

Work by Czarnecki and Wasowski reverse engineers fea-
ture models from sets of propositional logic formulas by
means of an ad hoc algorithm that can potentially extract
from a single propositional logic formula multiple feature
models while trying to preserve the original formulas and
reduce redundancies [5]. A recent extension of this work
provides improved algorithms based on CNF and DNF con-
straints [18]. In contrast with our work, their starting point
are configuration files, documentation files, and constraints
expressed in propositional logic.

Acher et al. also tackle the reverse engineering of fea-
ture models from feature sets by mapping each feature set
into a feature model which are later merged into a single
feature model [1]. Besides this difference, they do not con-
sider any other domain knowledge information. Sannier et
al. perfomed an analysis of matrices for product comparison
available at Wikipedia [16]. Their product matrices can con-
tain other values, rather than selected or not selected, as in
our case. Based on these matrices, their work identifies vari-
ability patterns in the values of the cells, and portrays the
challenges and potential benefits of exploiting that informa-
tion, among other things, to extract models such as feature
models. However, to the best of our knowledge, at present
there is no algorithm, let alone tool support, that capitalizes
on this information to aid the reverse engineering effort.

6. CONCLUSIONS AND FUTURE WORK
This paper presented a multi-objective approach to re-

verse engineering FMs. We introduced a measure to eval-
uate variability safety in addition to recall and precision.
For computing variability safety we considered dependency
graphs representing the source code dependencies. Our eval-
uation showed that a multi-objective approach can indeed
offer a set of solutions with good trade-offs. From this set
of solutions the software engineer has the power to select
which objective function to favour based on his/her needs.

Note that variability safety is not restricted to dependen-
cies of source code. A similar objective function can be com-
puted on other types of implementation artifacts. Further-
more this type of objective function expresses a conformance
of a candidate FM to a set of constraints, which can also in-
clude for instance those given by domain experts based on
their knowledge of the legacy system variants. Along these
lines, in our future work we plan to extract and use depen-
dency information from other sources besides code. In ad-
dition, we plan to apply and study other multi-objective al-
gorithms, analyze parameter settings, and use our approach
on more case studies.
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